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A bit of a function theory 

• The term Lambda (λ) originated from Lambda calculus - 

 a theoretical universal model for describing functions  

 and their computation 



A function concept in programming 

• Function represents a bit of reusable code 

• May take arguments (aka parameters)  

• May yield an outcome (pure function) and side effects (impure) 

• Function’s constituents 
– Signature – i.e. function’s name, argument(s) and a return value* 

– Executable code embedded within a part called Body 

 

 

 

 

 

 
* Definition of function’s signature itself differs slightly across various programming languages and platforms 

 public double exp(double a) { 
        // Body comes here 
 } 



Pure vs. Impure function 

• A pure function does not modify non-local data used beyond 
the function body 

• An impure one may bring about side effects 



Functional approach 

• A function as the first class citizen in functional programming 

• Declarative paradigm (as opposed to imperative one) 

• Nowadays such a model has increased its importance as it is 
well suited for a concurrent, event-driven and reactive style of 
programming 

• Enables runtime’s optimization for bulk operations on data 
collections or for processing a great deal of arriving events 

• With statelessness in place largely supports and enhances 
scalability and parallelism of operations  



AWS Lambda service 

• Enables implementations that are able to react quickly to events 

• Runs code in response to events such as file uploads 

• Provides means to extend other AWS services with custom logic 
deployed and launched directly on AWS 

• Performs all operational and administrative tasks 
– Including capacity provisioning, monitoring, applying security patches 

etc. 

• Facilitates creating discrete, event-driven applications 
– Can scale automatically from a few requests per day up to thousands per 

second 



AWS Lambda implementation 

• Currently supporting Node.js 

• From nodejs.org 
"Node.js is a platform built on Chrome's JavaScript runtime for easily 
building fast, scalable network applications. Node.js uses an event-driven, 
non-blocking I/O model that makes it lightweight and efficient, perfect for 
data-intensive real-time applications that run across distributed devices" 



Push and Pull models 

• Push model – an event producer (like Amazon S3) directly 
calls a Lambda function 
– The unordered model – the order Lambda processes events is 

unspecified 

• Pull model – AWS Lambda pulls the updates from the Stream 
(for AWS Kinesis or DynamoDB*) and then invokes a function 
– The ordered model – events are processed  in order they are 

published to the Stream 

 

 
 

 
* DynamoDB Streams maintains a time ordered sequence of item level changes in a log for 24 hours 



Essential AWS Lambda components 

• Lambda Function itself along with dependent libraries 

• Event Source 

• Execution Role 

• Invocation Role 



Lambda Function syntax 

• Skeleton code illustrates the straightforward syntax in which 
custom Node.js code (as a function) is written: 

 
exports.handler_name = function(event, context) { 

console.log("value1 = " + event.key1); 

console.log("value2 = " + event.key2); 

... 

context.done(null, "some message"); 

} 



Event format 

• Event structure and its content depend on its origin (source) 

• Simple generic JSON structure for user-defined events 

 
{ 

"key1":"value1", 

"key2":"value2", 

"key3":"value3" 

} 



Execution Role 

• Grants a function permissions to access AWS resources 

• AWS Lambda assumes this role while executing code on 
behalf of the client 



Invocation Role 

• Grants requisite permissions for the event source to leverage 
AWS Lambda’s components: 
– For the push model – grants permission to the event source to call 

a function 

– In the pull model – grants permission to AWS Lambda to allow pulling 
from a given Stream (AWS Kinesis or DynamoDB Stream) 



Example of S3 Event content 
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Some Lambda limit (valid during the Lambda preview) 

• Memory available – 128 ÷ 1024 MB 

• Ephemeral disk capacity – 512 MB 

• Total number of processes and threads – (256?) 1024 

• Concurrent requests – 25 per second 

• Execution duration per request – 60  seconds (max) 

• Compressed function .zip file – (20?) 30 MB 

• Uncompressed function .zip file – 250 MB 



Costs incurred 

• Pay-for-use pricing model 
– Per request to call a function 

• First 1 million requests per month are free 

• $0.20 per 1 million requests henceforth 

– Duration – function’s execution time 
• $0.00001667 for every GB-second used 

• Example 
A function with 512MB of memory allocated, run 3 million times in 1 month, and it took 2 second of processing each time. 

 

Request charges per month (1 000 000 = 1M) 

3M requests – 1M free tier requests = 2M 

Request charges = 2M * $0.2/M = $0.40 

 

Compute charges per month 

Total compute (seconds) = 3M * 2s = 6M seconds 

Total compute (GB-s) = 6M * 512MB/1024 = 3M GB-s 

Total compute – Free tier compute = 3M GB-s – 0.4M free tier GB-s = 2.6M GB-s 

Compute charges = 2.6 * $0.00001667 = $43.34 

  

Total charges 

Total charges = Request charges  + Compute charges  = $43.34 + $0.40 = $43.74 per month 

 
*The Lambda free tier does not automatically expire at the end of 12 month AWS Free Tier term 



Potential downsides 

• Less control over the code execution 

• Troubleshooting issues due to business logic dispersed over 
various components 

• Only Node.js implementation available for the time being 
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