
AWS Lambda in (a bit of) theory and in action

Adam Smolnik

A bit of a function theory

• The term Lambda (λ) originated from Lambda calculus -

 a theoretical universal model for describing functions

 and their computation

A function concept in programming

• Function represents a bit of reusable code

• May take arguments (aka parameters)

• May yield an outcome (pure function) and side effects (impure)

• Function’s constituents
– Signature – i.e. function’s name, argument(s) and a return value*

– Executable code embedded within a part called Body

* Definition of function’s signature itself differs slightly across various programming languages and platforms

 public double exp(double a) {
 // Body comes here
 }

Pure vs. Impure function

• A pure function does not modify non-local data used beyond
the function body

• An impure one may bring about side effects

Functional approach

• A function as the first class citizen in functional programming

• Declarative paradigm (as opposed to imperative one)

• Nowadays such a model has increased its importance as it is
well suited for a concurrent, event-driven and reactive style of
programming

• Enables runtime’s optimization for bulk operations on data
collections or for processing a great deal of arriving events

• With statelessness in place largely supports and enhances
scalability and parallelism of operations

AWS Lambda service

• Enables implementations that are able to react quickly to events

• Runs code in response to events such as file uploads

• Provides means to extend other AWS services with custom logic
deployed and launched directly on AWS

• Performs all operational and administrative tasks
– Including capacity provisioning, monitoring, applying security patches

etc.

• Facilitates creating discrete, event-driven applications
– Can scale automatically from a few requests per day up to thousands per

second

AWS Lambda implementation

• Currently supporting Node.js

• From nodejs.org
"Node.js is a platform built on Chrome's JavaScript runtime for easily
building fast, scalable network applications. Node.js uses an event-driven,
non-blocking I/O model that makes it lightweight and efficient, perfect for
data-intensive real-time applications that run across distributed devices"

Push and Pull models

• Push model – an event producer (like Amazon S3) directly
calls a Lambda function
– The unordered model – the order Lambda processes events is

unspecified

• Pull model – AWS Lambda pulls the updates from the Stream
(for AWS Kinesis or DynamoDB*) and then invokes a function
– The ordered model – events are processed in order they are

published to the Stream

* DynamoDB Streams maintains a time ordered sequence of item level changes in a log for 24 hours

Essential AWS Lambda components

• Lambda Function itself along with dependent libraries

• Event Source

• Execution Role

• Invocation Role

Lambda Function syntax

• Skeleton code illustrates the straightforward syntax in which
custom Node.js code (as a function) is written:

exports.handler_name = function(event, context) {

console.log("value1 = " + event.key1);

console.log("value2 = " + event.key2);

...

context.done(null, "some message");

}

Event format

• Event structure and its content depend on its origin (source)

• Simple generic JSON structure for user-defined events

{

"key1":"value1",

"key2":"value2",

"key3":"value3"

}

Execution Role

• Grants a function permissions to access AWS resources

• AWS Lambda assumes this role while executing code on
behalf of the client

Invocation Role

• Grants requisite permissions for the event source to leverage
AWS Lambda’s components:
– For the push model – grants permission to the event source to call

a function

– In the pull model – grants permission to AWS Lambda to allow pulling
from a given Stream (AWS Kinesis or DynamoDB Stream)

Example of S3 Event content

bucket with

objects

Amazon SNS

instance

Amazon EC2 Amazon S3

DynamoDB

table

DynamoDB Amazon SQS

queue topic

Where Lambda can simplify design

Amazon Lambda

λ
Node.js

user

object

Auto Scaling

Some Lambda limit (valid during the Lambda preview)

• Memory available – 128 ÷ 1024 MB

• Ephemeral disk capacity – 512 MB

• Total number of processes and threads – (256?) 1024

• Concurrent requests – 25 per second

• Execution duration per request – 60 seconds (max)

• Compressed function .zip file – (20?) 30 MB

• Uncompressed function .zip file – 250 MB

Costs incurred

• Pay-for-use pricing model
– Per request to call a function

• First 1 million requests per month are free

• $0.20 per 1 million requests henceforth

– Duration – function’s execution time
• $0.00001667 for every GB-second used

• Example
A function with 512MB of memory allocated, run 3 million times in 1 month, and it took 2 second of processing each time.

Request charges per month (1 000 000 = 1M)

3M requests – 1M free tier requests = 2M

Request charges = 2M * $0.2/M = $0.40

Compute charges per month

Total compute (seconds) = 3M * 2s = 6M seconds

Total compute (GB-s) = 6M * 512MB/1024 = 3M GB-s

Total compute – Free tier compute = 3M GB-s – 0.4M free tier GB-s = 2.6M GB-s

Compute charges = 2.6 * $0.00001667 = $43.34

Total charges

Total charges = Request charges + Compute charges = $43.34 + $0.40 = $43.74 per month

*The Lambda free tier does not automatically expire at the end of 12 month AWS Free Tier term

Potential downsides

• Less control over the code execution

• Troubleshooting issues due to business logic dispersed over
various components

• Only Node.js implementation available for the time being

(Fast) Live Cooking – Lambda at work

Amazon S3

Amazon Lambda

DynamoDB

